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Abstract Graphics processing units (GPU) allow image pro-
cessing at unprecedented speed. We present CLIJ, a Fiji plugin
enabling end-users with entry level experience in programming
to benefit from GPU-accelerated image processing. Freely pro-
grammable workflows can sped up image processing in Fiji by
factor 10 and more using high-end GPU hardware and on af-
fordable mobile computers with built-in GPUs.

Modern microscopy generates staggering amounts of multi-
dimensional image data that place increasing demands on pro-
cessing flexibility and efficiency. One way to speed up image
processing is to exploit the parallel processing capabilities of
graphics processing units (GPU).

Recently, GPU-acceleration was used in specific image pro-
cessing tasks such as reconstruction1,2, image quality determi-
nation3, image restoration4, segmentation5 and visualisation6.
However, in these tools, GPU code is fulfilling one specific
purpose and is not intended to be reused in other contexts. By
contrast, most common image processing tasks are solved by
building flexible workflows consisting of simple operations in
widely used tools such as ImageJ7 and Fiji8. Most of these op-
erations were however programmed at a time when GPUs were
not commonly used for general purpose processing. Therefore,
typical workflows consisting of core ImageJ operations do not
take advantage of GPUs. To address this issue we developed a
flexible and reusable platform for GPU-acceleration in Fiji.

Our platform, named CLIJ, complements core ImageJ oper-
ations with reprogrammed counterparts that take advantage of
the OpenCL9 framework to execute on GPUs. Within CLIJ,
we implemented a wide range of fundamental image process-
ing functions for morphological filters, spatial transforms, im-
age warping, local and global thresholding, minima/maxima
detection, logical operations on binary images, 3D-to-2D pro-
jections, and methods of descriptive statistics for quantitative
measurements (Suppl. Listing 1).

We then asked how much faster GPU-accelerated versions
of individual operations run compared to their counterparts on
the central processing unit (CPU). GPUs can do certain opera-

tions faster because they have many more processing cores then
regular CPUs (Figure 1a). In addition, memory access can be
multiple times faster on GPUs depending on the GPU hard-
ware. On the other hand, in order to be processed on GPUs,
the data and the compiled program have to be first pushed to
GPU memory, and later data have to be pulled back to CPU
memory. While this introduces an unavoidable overhead to any
GPU operation, once the data are on the GPU, functions we im-
plemented typically run faster on GPU compared to CPU. The
speed-up depends on the image size and for functions that have
parameters, the achievable speed may also depend on the val-
ues of the parameters (Figure 1b). Furthermore, after the first
execution of a CLIJ operation, performance increases because
of reuse of the compiled GPU code. We measured execution
time and speedup on two test systems: a consumer laptop (Intel
i7-8650U CPU and an Intel UHD 620 GPU), and a professional
workstation (two Intel Xeon Silver 4110 CPUs and an Nvidia
Quadro P6000 GPU). We observed that CLIJ operations were
up to about 100 times faster compared to their counter parts in
ImageJ running on the CPU (Figure 1c).

To demonstrate the utility of CLIJ in practical biological
image processing, we chose a multi-step example workflow
(Suppl. Figure 1) operating on 3D light sheet microscopy data
consisting of 300 time points of a Drosophila embryo in stages
4-8 expressing histone-RFP to mark the nuclei. The work-
flow performs Difference-of-Gaussian filtering to reduce back-
ground signal and noise, projects the data from 3D to 2D and
detects spots to count the nuclei. The processed image stack of
each time point consists of 400×1024×121 voxels occupying
189 MB in memory. Since CLIJ operations are new implemen-
tations of existing ImageJ functions based on a different com-
puting architecture, we determined how much the output of the
GPU-based workflow and the corresponding CPU-based work-
flow were different. We observed minor absolute differences in
the spot count result of 0.9±0.6 percent. Furthermore, we ob-
served differences of 0.05±0.04 percent in spot count depend-
ing on which GPU hardware CLIJ was executed (Suppl. Fig-
ure 2). While these differences may in practice be negligible
(Suppl. Figure 3, Suppl. Video 1), we think users should be
aware they may exist. The whole time lapse was processed
on the laptop within 2 hours and 44 minutes using ImageJ and
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11 minutes using CLIJ. On the workstation processing took 41
minutes using ImageJ and 5 minutes using CLIJ. Thus, these re-
sults show that using a consumer laptop, CLIJ enables speedups
by a factor of 15. Compared to the laptop CPU, execution on
the workstation GPU was 33 times faster. Furthermore, exclud-
ing compilation time and file input/output time from the time
measurement suggests that real-time image analysis becomes
feasible: In a smart microscopy software application, where
image data arrives in memory continuously directly from the
acquiring camera and GPU code recompilation is not neces-
sary, an estimation of cell count can be made from an image
stack in less than 0.5 seconds using the presented CLIJ-based
workflow.

Key feature of CLIJ is that it does not require any GPU pro-
gramming skills, or specialized hardware to be executed. As
it is based on the established OpenCL framework, it is not
limited to CUDA-compatible GPU devices. The user can as-
semble CLIJ operations to GPU-accelerated image process-
ing workflows in all programming languages available in Fiji
(ImageJ Macro, ImageJ-Ops, BeanShell, JavaScript, Jython,
Groovy, and Java). Users can start using CLIJ by simply mod-
ifying example code (Suppl. Code 1). Moreover, CLIJ op-
erations can be recorded using ImageJ’s macro recorder and
further modified in Fiji’s script editor where we added CLIJ-
specific auto-completion functions and online help (Suppl. Fig-
ure 4). CLIJ can be used in the cloud or on computing clusters
via ImageJ Jupyter notebooks or command-line interface. We
tested CLIJ successfully on GPU-hardware from major vendors
(Intel, AMD, Nvidia) and operating systems (Windows, Ma-
cOS, Linux). Finally, we facilitate providing additional GPU-
accelerated operations to be used within the ImageJ ecosystem
and extending CLIJ. Specifically, developers can deploy custom
OpenCL code using the modern ImageJ2 plugin mechanism10

in order to add functionality to CLIJ. For potential CLIJ devel-
opers we provide a plugin template together with the full open
source code of CLIJ at: https://clij.github.io/

In summary, CLIJ makes it possible to speed up image pro-
cessing workflows in Fiji to reduce processing time from hours
to minutes. Furthermore, CLIJ allows general purpose real-

time image processing, e.g. for smart microscopy applica-
tions. In order to facilitate adoption of this enabling technol-
ogy, we have put special emphasis on documentation, code
examples, interoperability, accessibility and user convenience.
Therefore, CLIJ enables a wide range of imaging scientists with
beginner-level programming experience to benefit from GPU-
acceleration.
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Figure 1: (a) GPU-acceleration schematically shows how many GPU cores potentially outperform a CPU with less cores. (b)
Execution time of the Gaussian blur and minimum filter for different image sizes and parameters. (c) Overview of speedup
measurements when applied to 16 MB large 8-bit images with respect to computation times on a laptop CPU.
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