

Leica SP8

Laser Scanning Confocal Microscope

Kyle Marchuk Austin Edwards Mohammad Naser Harrison Wismer May 2023

Contents

1	Introduction	3			
2	Hardware Start-Up	3			
3	Software Set Up and Configuration				
4	Finding the Sample via the Eyepiece	7			
5	Initial Imaging Setup 5.1 Dye Assistant				
6	Imaging Parameters6.1 XY Tab	9 10			
7	Imaging Modules 7.1 Z-Stack 7.2 Navigator 7.3 Time Series 7.4 Tiling 7.5 Mark and Find	12 13 14			
8	Spectral Unmixing Modules 8.1 Spectral Acquisition 8.2 Linear Unmixing 8.3 Blind Unmixing 8.4 Other Options	15 15			
9	LIGHTNING	15			
10	10.1 Project Naming and Saving				

1 Introduction

The Leica SP8 is an upright laser scanning confocal system configured for large volume (cleared tissue) multiplexed imaging. The SP8 comes equipped with an AOBS tunable detection pathway (3 PMTs and 2 HyD detectors able to detect from 380nm-800nm), a white light laser (470nm-670nm), and the Lighting deconvolution module. The HyD detectors offer a "true black" background and are able to gate on fluorescence lifetime (allowing for the in-line reduction auto-fluorescence).

The objectives available for use on the SP8 are:

Objective	Mag	Numerical	Working	ID Number
		Aperture	Distance	
Fluotar (BABB)	16x	0.6	2.5 mm	506533
Fluotar IMM MotCorr	16x	0.8	8.15 mm	507706
IMM HC PL APO CS2	20x	0.75	0.22 mm	506343
Apo IMM (W Dipping)	20x	0.95	1.95 mm	507705
Fluotar IMM MotCorr	25x	1.0	6 mm	507703
Plan-Apo Water IMM	63x	1.2	0.2 mm	506190

Please Note: The objectives denoted with the MotCorr require special sample holders and training. If your samples require these extra long working distance, please contact the BIDC for this objective specific training.

The system also contains spectral scanning, three-dimensional (z) acquisition and time-lapse capabilities. A programmable stage allows automated return-to-site and multiple-field stitching.

Please sign up for time using the iLab microscope scheduler.

2 Hardware Start-Up

1. Turn on the three green switches on the right side of table, turn emission key to on position. See Figure: 1.

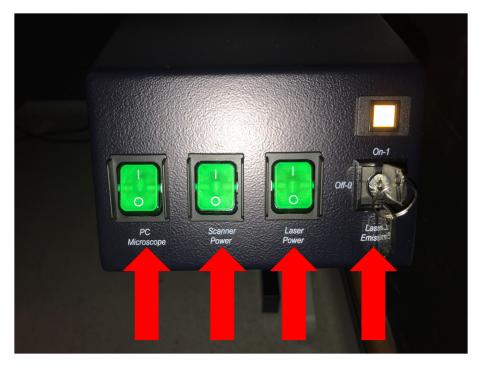


Figure 1: Turn on Left to Right then Key

2. Turn on lamp box (top box in the middle of the table) This lamp is an LED that can be switched on and off without cool down. See Figure: 2.

Figure 2

3. Turn on XYZ control panel. See Figure: 3.

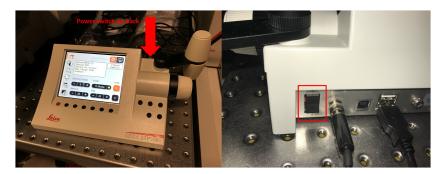


Figure 3

4. Turn white light emission key to on position (box all the way to the left). See Figure: 4.

Figure 4

3 Software Set Up and Configuration

- 1. Log on to computer.
- 2. Due to the size of the motCorr objectives needed for cleared and large tissue imaging, we are unable to install a turret with multiple objective positions. At the beginning of each imaging session, the objective

must be manually changed in the software as well as on the body of the microscope. In order to update objective changes, we need to go into the **Leica LAS X Hardware**. See Figure: 5.

Figure 5

3. Click on Configure (gear icon). See Figure: 6

Figure 6

- 4. In the list of components, click on Nosepiece. See Figure: 6
- 5. Enter the last three digits of the serial number for the chosen objective into the search bar (half way down the page) in order to find the proper objective in the system. The serial number can be found on the side of the objective itself and in the **Introduction** of this User Guide.



Figure 7

6. Double click on the objective to select it for use. If the objective has been properly selected, it will appear in the window at the top of the screen. See Figure: 8

Figure 8

- 7. Close the Hardware window.
- 8. At this point the stage should be raised to the upper position. Make sure the stage is in the upright position before opening the LAS X software. The stage is properly latched in the upright position when and audible 'click' is heard. See Figure: 9

Figure 9

9. Open the LAS X software. Choose the start up configuration options. The resonant scanner can only be turned on and off in this window. See Figure: 10

Figure 10

10. Initialize the stage. THE STAGE MUST BE IN THE UP POSITION FOR INITIALIZATION OR IT WILL HIT THE BODY OF THE SCOPE AND KNOCK IT OUT OF ALIGNMENT.

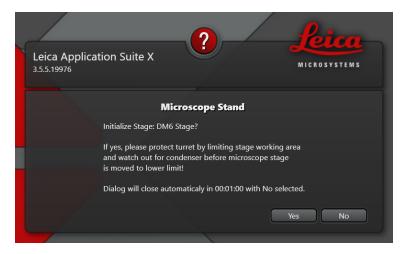


Figure 11

- 11. Mount the objective. If using the regular sized 16x, 20x, or 63x, you will need to add the silver extension tube. If using the 20x water dipping, 16x motCorr, or 25x motCorr, you can mount them right to the scope. See Figure ...
- 12. Mount your sample to a stage insert and place it on the stage. Screwing the insert down is not necessary to have a stable image. **Please note:** you are adding your sample to the z-peizo so please be gentle.
- 13. Add the proper immersion liquid (water or oil) to your slide.
- 14. Ensure the z stepper motor is at its upper limit by using the 3-axis controller. See Figure ...
- 15. Raise the stage into its upper position. Please get prior BIDC approval to use any custom or non-Leica stage inserts as the dimensions are extremely important to the safe usage of the microscope!

4 Finding the Sample via the Eyepiece

- 1. Move the stage in the xy-directions until your sample is under the objective.
- 2. Carefully lower the objective to your sample until it is touching the immersion solution.
- Choose the color wheel option on the XYZ Control Panel (second icon on the left) and click FLUOR tab (top middle).
- 4. Choose the filter you would like to use. A-Dapi, N21-Red, I3-Green. **Note:** use the brightest most ubiquitous fluorophore to find your sample.

- 5. Click the **IL-Shutter** button to open and close the shutter.
- 6. Using the fine adjust only, bring your sample into focus.
- 7. Once the sample can be seen through the eyes, close the shutter and go to the **LAS X** software for imaging setup.

5 Initial Imaging Setup

If there are fewer than 5 colors being imaged within the sample, the Dye Assistant can be used to quickly set up an imaging sequence. If the sample has more than 5 colors, the sequential scans will have to be set up manually.

5.1 Dye Assistant

1. Click on the Dye Assistant icon located in the middle of the page. See Figure: 12

Figure 12

2. In the Dye Assistant window, click the '...' button in order to select the fluorescent markers that are present in the sample. See Figure: 13

Figure 13

- 3. Choose which detector you want to pair up with the fluorescent marker in the 'PMT or HyD' tab. Note: the HyD detectors are meant for detecting markers that are dimmer or are more sensitive to higher laser powers. If the marker is too bright and a HyD detector is used it can damage the detector. For this reason, the detector has a safety shut off and can only be turned on when the fluorophore intensity is low enough. This can be achieved by lowering the gain and laser power.
- 4. After choosing the fluorescent markers and the detectors, the **Dye Assistant** will provide a list of imaging sequence options. The top option on the list will generally be the fastest sequence but will have the most amount of bleed through. Whereas, the last option on the list will be the slowest option but will have the least amount of bleed through. Users have the ability to edit their sequence choice (laser and detector settings) within the **Dye Assistant** or after the settings have been applied.

None Sequential: All channels will be acquired simultaneously. Fastest option, but it limited to 5 channels. Will likely have the most **Crosstalk** of the suggested settings.

- **Line Sequential:** Switches **Sequences** each line of the image scanned. For there to be any speed in this setting, the collection **Bandpass** will be set at the same width.
- **Frame Sequential:** Switches Sequences at the end of each image plane. No limitation on the width of the **Bandpass**. Switching sequences does take time.
- **Stack Sequential:** Switches **Sequences** at the end of each **Stack**. Considerable faster than **Frame Sequential** and no limitation on **Bandpass**.
- 5. Once a sequence in the dye assist has been selected, the program will ask you if you want to turn on the lasers needed for imaging. Select **yes**.

5.2 Manually Creating Sequences

- 1. Click on the SEQ button found in the Acquisition Mode tab. A sequential Scan window will appear.
- 2. Launch the laser power menu by pressing the laser Menu button. See Figure...
- 3. Turn the **Power State** to **ON** for the lasers you will use. See Figure...
- 4. Add laser lines by pressing the '+' button. See Figure... **Note:** to add the 405 nm laser press the '405' button.
- Turn on the PMTs you will use for each laser line and adjust the bandpass window.
 Note: the minimum setting for the PMT bandpass window should be set at least 10 nm above the excitation wavelength.
- 6. In the Sequence menu press the '+' to add the next sequence to your acquisition.
- 7. Assign PMTs, bandpass windows, and lasers (check and uncheck laser lines) to this sequence.
- 8. Repeat for as many sequences as needed.

5.3 Optimizing the Fluorescence Signals

- 1. Click 'Live' in the lower left of the screen to start imaging the first of your sequences. The PMTs will be automatically set to 800V and the HyD detectors will be set to 100 percent.
- 2. Ensure the sample is in the imaging plane by adjusting the Z Position using the dial on the smart panel (not the microscope). You may need to adjust the **Look up Table (LUT) slider** to see signal.
- 3. Select the **Over/Under Saturation** display for the live images.
- 4. Click on the displayed imaged to select that channel for gain adjustment.
- 5. Adjust the laser power and gain until you have a bright image just below saturation (blue pixels).
- 6. Click the Capture Image button to collect and save an image of that sequence.
- 7. Click the **Start** button to collect collect and save an image of all sequences.

6 Imaging Parameters

After setting up the laser and gain acquisition settings for the sequences, the user can set up the rest of sample acquisition parameters.

6.1 XY Tab

Figure 14: XY Tab

In general, used for setting up XY parameters pertaining to how images are captured.

Format: The size of the image in pixels. Suggested size is 1024x1024 for most applications.

Speed: Image acquisition speed. Suggested speed is **600 Hz**. Speed faster than 600 Hz will require increasing the Zoom of the image.

Bidirectional X: Data is collected on both movement directions of the X galvo. Some acquisition parameters are tied to this setting.

Zoom Factor: Digital Zoom of the image. Increasing the magnification of the objective will give a better image and optical section capability.

Zoom In: Press this button to draw an ROI on the image. The microscope will zoom on the ROI.

Image Size: Describes the size of the image in **microns**. This is dependent on the **Objective**, **Format**, and **Zoom Factor**.

Pixel Size: Describes the size of the pixel in **microns**.

Optical Section: Thickness of the image plane.

Pixel Dwell Time: Length of data collection for each pixel.

Frame Rate: Time required to collect a single sequence at a given image plane.

Line Average: Number of times each line of the image will be acquired and averaged to produce the image. Used to reduce noise.

Line Accu: Number of times each line is accumulated (summed) to produce and image. Can be used on very dim samples.

Frame Average: Number of times each frame of the image will be acquired and averaged to produce the image. Used to reduce noise.

Frame Accu: Number of times each frame is accumulated (summed) to produce and image. Can be used on very dim samples.

Auto Gain: The system will increase the gain to optimize the image with the current laser power.

Rotation: Rotation of the image.

Pinhole: Used to adjust the pinhole size. Increasing the pinhole produces a brighter signal at the expense of your optical section capability.

7 Imaging Modules

7.1 Z-Stack

Used for creating the volumes of a 3D stacked image.

Figure 15: Z-Stack Tab

Begin: Using the **Z Position** knob, move the image plane to the 'Top' of your sample and press this button to assign this position.

End: Using the **Z Position** knob, move the image plane to the 'Bottom' of your sample and press this button to assign this position.

Trash Can Icon: Deletes your position assignments.

Stack Direction (Z): Scanning direction for the volume acquisition. Typically want to move the stage in the **Up** direction to scan from the Top of your sample to the Bottom.

- **z-Galvo:** Uses the z-piezo actuator for movement. Fast, but limited to 500 microns of travel range.
- z-Wide: Uses the z-stepper motor for movement. Slower, but has 13 mm of travel range.

Number of Steps: Within the given volume, determines z-step size by number of image planes.

Z-Step Size: Within the given volume, determines the number of steps by step size.

System Optimized: Determined by the objective; the smallest step size before over-sampling the volume.

- **Z-Compensation:** Is used to associate laser power and gain with a z-position. Typically used to compensate for scattering in a thick sample.
 - 1. Check which options you'd like to associate with z-position. **Excitation Gain** is laser intensity. **Emission Gain** is the PMT gain.
 - Navigate to an imaging plane within your volume and adjust the laser intensity and PMT gain to your satisfaction.
 - 3. Move to other plane and repeat the process.
 - 4. Delete any positions you do not need, or may have loaded when you started.
 - 5. Select your next **Sequence** and repeat the process.

Galvo Flow: When **On**, the z-stage does not stop at each individual step. Instead it continuously moved from the **Begin** to **End** point. Useful when needing super fast acquisitions.

Travel Range: Travel range of the selected z stage.

7.2 Navigator

The **Navigator Module** is a large-area exploration tool that is capable of setting up multiple ROIs of different sizes for tiled-image acquisition. The navigator can be opened by clicking the grid icon in the top left corner of the main LAS X window.

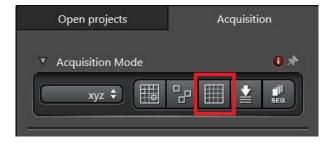


Figure 16: Navigator Icon

Once open, you should see a white box on a gray background. This box represents the current field of view of the stage. When opening the navigator for the first time, this box will be located at last field of view seen in the main software window.

Moving the Stage: Double-click on the viewing area and the stage will move and take a preview tile using the currently selected sequence.

Live: Press the Live button to continuously view the current stage position depicted by the white box.

Fast Live: Press the **Fast Live** button to continuously view that stage position in a lower resolution (faster than **Live**).

Spiral Press the Spiral button to engage the stage in an expanding pattern for exploration.

ROIs Using the ROI shape tools, draw ROIs on the stage area for exploration or experiment acquisition.

Figure 17: ROI & Focus Map tools located at the bottom-center of the screen

Preview Press Preview and the microscope will do a fast acquisition of the drawn ROIs.

Start Press **Start** to run the experiment from the **Navigator**. Any ROIs created for tiling will be listed in the tab in the bottom right of the screen. Shapes can be either deleted or temporarily turned off using this tab.

Figure 18: List of all created ROI shapes to be imaged.

Focus Map For uneven tissues, individual focus points can be manually placed and each associated with a unique Z position in order to correct for the uneveness of the sample.

- Select either the blue focus point or green auto-focus point from the options next to the ROI tools.
 See Figure 17.
- The Focus Map option will now be illuminated. Select Focus Map, and click on the first focus point listed.
- 3. The software will zoom in on a live view of the field of view surrounding the selected focus point. Adjust the Z position until the sample is in the desired focal plane.
- 4. Once satisfied, select **Set Z** to associate the focus point with the current Z position.
- 5. Hit **Next**. Then repeat steps 3-5 for each focus point placed.

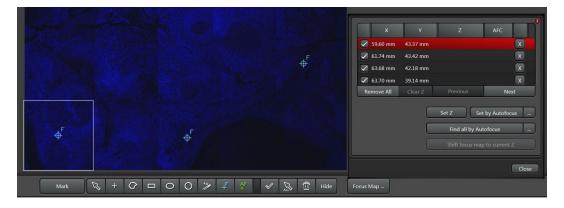


Figure 19: Focus Map Tab

7.3 Time Series

Used for setting up a **Time Series**, **Time Lapse**, or Movie for "live" samples.

1. Under Acquisition Mode select 'xyzt' from the drop down menu.

7.4 Tiling

The **Tiling Module** will create a 2D grid for acquisition based upon saved stage positions.

- 1. Locate an initial corner position (upper right, lower left, etc) for your grid either through the eyepiece or while **Live**.
- 2. Press the Add Position button to save that position.
- 3. Move the stage to another edge of the ROI and add that position.
- 4. A grid will appear in the Stage window. Note: move the Zoom slider if you do not see a grid appear.
- 5. To increase the grid size, add more points outside the current grid.
- 6. To decrease the grid size, add points within the current grid, and delete the unecessary point by selecting that point in the drop down menu and pressing the **Trash Can Icon**.
- 7. **Turn Merge Images**, **Auto Stitching**, and **Linear Blending** to **ON** to automatically create a stitched imaged at the end of acquisition.
- 8. To **Use Focus Map** a focus map will need to be made in the Navigator (See Below).

7.5 Mark and Find

The Mark and Find Module is a way to quickly save points and take a single-viewing-area image or volume.

- 1. Identify a position of interest while moving the stage in **Live** mode.
- 2. Add the position of interesting by pressing the Add Position button.
- 3. To remove an unwanted position select the position from the **Positions** drop down menu and press the **Trash Can Icon**.
- 4. Select Same stack for all if you want to use the same imaging plane or Z-Stack setup for each position.
- 5. To define separate volumes for each position:
 - (a) Select your first position from the dropdown.
 - (b) Define your volume in the **Z-Stack** panel.
 - (c) Press Redefine Stack
 - (d) Select your next position and repeat the process.

8 Spectral Unmixing Modules

The Leica SP8 equipped with AOBS detectors and a white light laser is an ideal microscope for imaging beyond 4 colors. Even with optimized settings, however, there is likely to be some bleedthrough between channels either from excitation or emission overlap. The software has options for mathematically unmixing this overlap.

- 8.1 Spectral Acquisition
- 8.2 Linear Unmixing
- 8.3 Blind Unmixing
- 8.4 Other Options

9 LIGHTNING

10 Other Imaging Tips

10.1 Project Naming and Saving

It is important to adopt a project naming and saving convention to avoid future headaches when trying to analyze the data.

10.2 USB Control Panel

The USB Control Panel (Figure ...) can be customized to include controls you may need. For example; the xy stage position can be controlled similarly to the z-piezo. To add additional features:

- 1. Press the USB Panel shortcut button (Figure...).
- 2. Select Scan Field Rotation and change it to x Position (Stage).
- 3. Select Pinhole and change it to y Position (Stage)

10.3 Acquisition 'Live'

As mentioned previously, the **Live** buttom will show an image at your selected resolution without line average, frame averaging, etc that you may have selected. To change the **Live** option to reflect these acquisition parameters:

1. Select **Configuration** new to the **Acquisition** tab on the top of the screen.

2.

11 Saving and Shut Down

- 1. Save images to your folder on the **E**: drive and remove data when finished.
- 2. Close LAS X software.
- 3. Shut down computer through the **Start** menu.
- 4. Remove **Objective** and extension tube from microscope body.
- 5. Clean objective and place back in protective case.
- 6. Turn white light emission key to off (box all the way to the left).
- 7. Turn off XYZ control panel.
- 8. Turn off lamp box (top box in the middle of the table).
- 9. Turn off three green switches on the right side of table then turn key to off.
- 10. Ensure the area is clean and tidy for the next user.
- 11. Inform the **BIDC** if any materials needs to be replaced or replenished.

Contact the BIDC

The BIDC office is located in Medical Sciences Building Room S1109.

The BIDC office phone number is 415-476-4550.

If you need immediate/emergency assistance and no one is available in the office, or it is after business hours, please call the **BIDC Hotline** at 415-745-2432.